Higher order methods¶
This subpackage contains third and higher order methods.
See also¶
- Second order - second order methods.
- Quasi-newton - quasi-newton and conjugate gradient methods.
Classes:
-
HigherOrderNewton
–A basic arbitrary order newton's method with optional trust region and proximal penalty.
HigherOrderNewton ¶
Bases: torchzero.core.module.Module
A basic arbitrary order newton's method with optional trust region and proximal penalty.
This constructs an nth order taylor approximation via autograd and minimizes it with
scipy.optimize.minimize
trust region newton solvers with optional proximal penalty.
The hessian of taylor approximation is easier to evaluate, plus it can be evaluated in a batched mode, so it can be more efficient in very specific instances.
Notes
- In most cases HigherOrderNewton should be the first module in the chain because it relies on extra autograd. Use the
inner
argument if you wish to apply Newton preconditioning to another module's output. - This module requires the a closure passed to the optimizer step, as it needs to re-evaluate the loss and gradients for calculating higher order derivatives. The closure must accept a
backward
argument (refer to documentation). - this uses roughly O(N^order) memory and solving the subproblem is very expensive.
- "none" and "proximal" trust methods may generate subproblems that have no minima, causing divergence.
Args:
order (int, optional):
Order of the method, number of taylor series terms (orders of derivatives) used to approximate the function. Defaults to 4.
trust_method (str | None, optional):
Method used for trust region.
- "bounds" - the model is minimized within bounds defined by trust region.
- "proximal" - the model is minimized with penalty for going too far from current point.
- "none" - disables trust region.
Defaults to 'bounds'.
increase (float, optional): trust region multiplier on good steps. Defaults to 1.5.
decrease (float, optional): trust region multiplier on bad steps. Defaults to 0.75.
trust_init (float | None, optional):
initial trust region size. If none, defaults to 1 on :code:`trust_method="bounds"` and 0.1 on ``"proximal"``. Defaults to None.
trust_tol (float, optional):
Maximum ratio of expected loss reduction to actual reduction for trust region increase.
Should 1 or higer. Defaults to 2.
de_iters (int | None, optional):
If this is specified, the model is minimized via differential evolution first to possibly escape local minima,
then it is passed to scipy.optimize.minimize. Defaults to None.
vectorize (bool, optional): whether to enable vectorized jacobians (usually faster). Defaults to True.
Source code in torchzero/modules/higher_order/higher_order_newton.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|